Discover how Recombinant Insulin can be part of your processes

Recombinant Insulin applications

Recombinant Insulin applications

High-performance biomanufacturing processes are needed to accelerate the time-to-market of safe and efficient drugs, reaching thousands of patients worldwide. The unique biological properties of insulin make it a key growth-supporting ingredient in many different cell culture processes. Recombinant insulin improves cell proliferation and boosts the production of therapeutic proteins for various applications, viral vectors for advanced therapies, and viruses for vaccines.

From monoclonal antibodies to cell and gene therapies, and vaccines, Novo Nordisk Pharmatech recombinant insulin is contributing to improving the lives of people living with arthritis, cancer, multiple sclerosis, and many more medical conditions.

Recombinant Insulin Applications

Explore our applications here:

Therapeutic proteins

Today, the central pillar of the pharmaceutical industry is represented by the development of biological drugs manufactured from engineered mammalian cell lines. Compared to small molecule drugs, biotherapeutics show exceptional specificity with fewer off-target interactions and improved safety profiles.

The standard process to produce high quantities of therapeutic proteins in biopharma is represented by fed-batch cultures of Chinese Hamster Ovary cells. These cells, genetically engineered to express high amounts of recombinant protein, can be grown in serum-free and chemically defined media, and have lower risks of propagating human viruses. For all these reasons, today CHO cells provide the platform for about 70% of biological drugs.

With the continuing expansion of the biotherapeutics market, the biopharmaceutical industry is facing the challenge of efficiently producing therapeutic proteins in large quantities. To keep up with the demand while driving manufacturing costs down, mammalian cell production expectations are rising every year, with product titers reaching 10 g of protein/L of culture. Combined efforts in improving host cells and optimizing the cell culture media contribute to the high yields obtained.

Recombinant Insulin is an essential supplement in chemically defined media cell cultures of CHO cells, producing monoclonal antibodies. When supplemented to the media, insulin is improving monoclonal antibody yield from 4g/L to 6g/L in fed-batch culture of CHO-K1 cells. Recombinant Insulin is currently used in the biomanufacturing of more than 100 therapeutic drugs, some of them being blockbusters.

Read our case study about optimizing CHO-K1 fed-batch cell culture medium for mAb production here.

Therapeutic proteins

Viral vectors

Viral vectors are at the heart of advanced therapies, representing the standard vehicle for gene delivery. A variety of gene therapy drugs, based on viral vectors, have obtained regulatory approval within the past 5 years. The applications of these drugs range from vector-based cancer therapies to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses (AAV), and lentiviruses (LV). To address the increased demand for advanced therapies in the commercial space, viral-vector manufacturing requires rapid expansion.
Unlike the production of monoclonal antibodies, viral-vector manufacturing is not standardized across the industry, with different biopharma companies using different production systems and downstream processes. The diversity in manufacturing modalities among advanced therapy companies rises concerns about the regulatory standards for manufacturing and quality control.
In particular, the quality of the raw materials used for the manufacturing of these therapies represents a critical aspect influencing future development and approval of the final product. Making the right choice early is critical for gaining regulatory approval and achieving patient access faster.
Manufactured under GMP regulatory requirements, Recombinant insulin is the best candidate to support the production of viral vectors in the cell culture of mammalian cells. Supplementing insulin to chemically defined cell culture media can significantly improve the production of both AAV and LV in HEK293 cells, adapted to grow in suspension. A study found that the production of AAV was increased up to 1.5-fold and the production of LV up to 2-fold when insulin was added to the cell culture medium.

Read our case study about the effects of insulin on viral vectors production in HEK293 cells here.

Advanced Therapies


Traditionally, the manufacture of vaccines, such as the annual flu vaccine, relies on the use of chicken fertilized eggs, used to grow the virus. Over the past decade, however, increased efforts have been made to develop eggless manufacturing technologies, in to produce more vaccines quicker.

Cell-based virus production offers a faster and more stable production of vaccines compared to embryonic chicken eggs, which only produce 1-2 vaccine doses per chicken egg. Cell culture technology is more flexible and may allow for multiple viral vaccines to be produced in the same production platforms, in a more sterile environment. In addition, the use of cell-based systems in vaccine production has the potential to offer better protection compared to egg-based flu vaccines.

In the cell culture-based production system, the candidate vaccine viruses are grown in mammalian, avian or insect cell cultures. Typically, these cells are Madin-Darby Canine Kidney cells, or monkey cell lines, like pMK and Vero, and human cell lines HEK 293, MRC 5, Per.C6, PMK, and WI-38. The virus replicates exploiting the cellular pathways and is then extracted from the cell culture media and purified.

Among the cell lines used for vaccine preparation, HEK293 is widely utilized due to its high transfectivity, rapid growth rate, and ability to grow in a serum-free, suspension culture. To maximize the production of viruses in cell-based systems, optimal cell growth conditions must be identified, supporting cell proliferation and viral replication. A study found that recombinant insulin added to chemically defined media, increased the production of flu virus by up to 2-fold, compared to the medium without insulin.

Read our case study about influenza virus production here.


Stem cells

The use of induced pluripotent stem cells (iPSCs) has gained increasing attention in recent years, thanks to the enormous potential in the development of new treatments for various diseases and injuries

The biomanufacturing of iPSCs involves several stages, including cell isolation, reprogramming, expansion, and differentiation. These stages must be carefully controlled and monitored to ensure the consistency and quality of the final product.

One critical aspect of biomanufacturing iPSCs is the use of appropriate cell culture media formulations. These media must be optimized to provide the necessary nutrients and growth factors to support cell growth and differentiation while maintaining the cells’ pluripotency. The media must also be free from contaminants and other harmful substances that could compromise the cells’ quality or pose a risk to patients.

To ensure the quality and safety of iPSCs products, strict adherence to regulatory requirements is crucial. These regulatory requirements include current good manufacturing practice (cGMP) guidelines, which establish quality control standards for the production of iPSCs and the use of regulatory-compliant cell culture media.

Moreover, the use of serum-free and xeno-free media formulations is becoming increasingly important in adhering to regulatory requirements. These media formulations eliminate the use of animal-derived products, reducing the risk of contamination and ensuring the safety and ethical implications of using animal products in clinical applications.

Manufactured under GMP regulatory requirements, Recombinant insulin is the best candidate to support the production of iPSC. Supplementing insulin to chemically defined cell culture media can significantly enhance the quality and productivity of these cells while maintaining their stability.

A study showed that using Recombinant Insulin as an ingredient in the formulation of cell culture media can improve cell morphology, growth and attachment, while maintain pluripotency unaltered over long term passages.

Read our case study about enhancing hiPSC culture quality here.

Enhancing hiPSC culture quality with Recombinant Insulin supplementation 2

Watch our animated video about recombinant insulin


Press link to watch the video directly on youtube

Contact an expert
Contact an expert
If you have any questions about recombinant insulin, please contact one of our experts.

Phone: +45 31970096