STUDY OF r-INSULIN SUPPLEMENTATION IN EXPISES CELL CULTURES FOR CELL GROWTH AND **BACULOVIRUS-DRIVEN HIV-1 VLP PRODUCTION**

Díaz-Maneh, A., Puente-Massaguer, E., Cervera, L., Gòdia, F.

Cell and Bioprocess Engineering Group

Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

OUTLINE

The aim of this study was to investigate the effect of r-insulin in Sf9 cell cultures growing in SF CD medium. An initial phase of adaptation to different r-insulin concentration was performed prior to experimentation. The first part focused on the evaluation of r-insulin as a supplement focell growth and viability maintenance. In the second part, r-insulin was investigated as an enhancer for HIV-1 Gag VLP production through baculovirus infection (BV). The Gag gene was fused in frame to eGFP to ease process characterization and product quantification.

Cell growth kinetics of Sf9 cells in Sf9 CD medium.

A. Viable cell concentrations and viabilities of Sf9 cells at different r-insulin concentrations (n=3). B. Comparison of viable cell concentrations and viabilities of Sf9 cells with 1 mg/L and without r-insulin supplementation (n=3).

Gag-eGFP production kinetics in supernatant at different r-insulin concentrations The results of triplicate experiments are shown.

Gag-eGFP VLP concentrations measured using Nanoparticle Tracking Analysis (NTA) **A.** VLP concentration. **B.** Size distribution of fluorescent particles with 1 mg/L supplementation.

CONCLUSIONS

 \checkmark A 1.1-fold reduction in dt_{1/2} was achieved with 1 mg/L r-insulin supplementation

✓ A 1.2-fold increase in VLP production was attanined with 1 mg/L r-insulin

A 1.2-fold improvement in maximal viable cell concentration was obtained with 1 mg/L r-insulin \checkmark

REFERENCES

Cervera, L. et al. Journal of Biotechnology. 166, 152–165 (2013). Puente-Massaguer, E. et al. Engineering in Life Sciences. 1–13 (2019). The insulin used in this work was kindly provided by Novo Nordisk Pharmatech A/S (Koege, Denmark). Fruitful discussions with Sara Gualdoni and Vanessa León are acknowledged.

ACKNOWLEDGEMENTS